Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary

淺富營(yíng)養(yǎng)化河口存在過量氮的時(shí)硝酸鹽的還原途徑

來源:Environmental Pollution(2018年,卷238,頁599-606)

 

論文概述

研究了美國(guó)阿拉巴馬州Weeks Bay(一個(gè)淺水富營(yíng)養(yǎng)化河口)中硝酸鹽還原途徑的動(dòng)態(tài)。研究通過野外采樣和實(shí)驗(yàn)室實(shí)驗(yàn),量化了反硝化(denitrification)和異化硝酸鹽還原為銨(DNRA)的速率,重點(diǎn)評(píng)估了在過量氮輸入下,硫化沉積物如何促進(jìn)氮保留而非去除。論文強(qiáng)調(diào)了DNRA在富營(yíng)養(yǎng)化河口中的主導(dǎo)作用及其對(duì)生態(tài)系統(tǒng)管理的啟示。

 

1. 摘要核心內(nèi)容

摘要指出,河口富營(yíng)養(yǎng)化源于人為營(yíng)養(yǎng)輸入增加,生態(tài)系統(tǒng)恢復(fù)部分依賴于氮的去除或保留過程。反硝化(將硝酸鹽還原為氮?dú)猓┖虳NRA(將硝酸鹽還原為銨)是關(guān)鍵途徑。在Weeks Bay這個(gè)淺水微潮河口,假設(shè)硫化沉積物中DNRA速率會(huì)超過反硝化。研究結(jié)果支持這一假設(shè):DNRA平均速率為44.4 ± 5.5 μmol N m?2 h?1,遠(yuǎn)高于原位反硝化(0.9 ± 2.3 μmol N m?2 h?1)。即使在硝酸鹽豐富條件下,DNRA也占主導(dǎo)(占硝酸鹽還原的66%)。DNRA向水柱提供生物可利用氮,相當(dāng)于15%的氮輸入保留量,是河口氮預(yù)算的重要組成部分。通過保留氮,DNRA支持初級(jí)生產(chǎn)但加劇富營(yíng)養(yǎng)化,導(dǎo)致缺氧、有害藻華和魚類死亡。未來管理必須減少營(yíng)養(yǎng)輸入,否則DNRA的氮保留將維持不良生態(tài)系統(tǒng)狀態(tài)。

 

2. 研究目的

本研究的主要目的是:

 

量化硝酸鹽還原途徑:在富營(yíng)養(yǎng)化河口Weeks Bay中,測(cè)量反硝化和DNRA的速率,評(píng)估其相對(duì)重要性。

測(cè)試假設(shè):在硫化沉積物中,DNRA速率超過反硝化,且即使在過量硝酸鹽下也占主導(dǎo)。

評(píng)估氮保留的影響:理解DNRA如何貢獻(xiàn)于氮預(yù)算和初級(jí)生產(chǎn),加劇富營(yíng)養(yǎng)化。

 

提供管理見解:為河口恢復(fù)策略提供科學(xué)依據(jù),強(qiáng)調(diào)減少營(yíng)養(yǎng)輸入的必要性。

 

3. 研究思路

研究采用了野外采樣與實(shí)驗(yàn)室實(shí)驗(yàn)相結(jié)合的方法:

 

站點(diǎn)選擇與采樣:在Weeks Bay的兩個(gè)站點(diǎn)(Mouth和MidBay;圖1)進(jìn)行季度采樣(2011年12月至2013年10月),采集沉積物核心和水樣。

 

環(huán)境參數(shù)測(cè)量:使用YSI多參數(shù)儀測(cè)量水溫、鹽度、pH和溶解氧(DO);采集水樣分析營(yíng)養(yǎng)鹽(NO?、NH?、PO?);沉積物分析包括粒度、總碳氮含量和葉綠素a(圖2)。

 

過程速率測(cè)量:

 

反硝化和DNRA:使用流動(dòng)系統(tǒng)添加1?NO? tracer,通過同位素配對(duì)技術(shù)(IPT)和膜入口質(zhì)譜儀(MIMS)測(cè)量N?通量,計(jì)算反硝化速率;通過1?NH??生產(chǎn)測(cè)量DNRA速率(圖4)。

 

微電極剖面:使用丹麥Unisense微電極(Ox-500和H?S-50)測(cè)量沉積物O?和H?S的垂直剖面(1mm分辨率;圖3)。

 

數(shù)據(jù)分析:使用統(tǒng)計(jì)檢驗(yàn)(ANOVA)和主成分分析(PCA;表2)識(shí)別影響反硝化和DNRA的關(guān)鍵環(huán)境因素。

 

4. 測(cè)量數(shù)據(jù)、來源及其研究意義

本研究測(cè)量了多維度數(shù)據(jù),其具體來源和科學(xué)意義如下:

 

環(huán)境參數(shù)數(shù)據(jù)(來自 圖2和文本):

 

數(shù)據(jù):水溫(季節(jié)變化10°C)、鹽度(最低1.6)、營(yíng)養(yǎng)鹽濃度(NO?: 0.6-16.8 μM, NH?: 0.3-3.4 μM, PO?: <0.2 μM)、沉積物C:N比(平均15.0)。

 

研究意義:表征系統(tǒng)富營(yíng)養(yǎng)化狀態(tài),高N:P比(118:1)表明氮過剩,為過程速率提供背景。鹽度波動(dòng)反映淡水輸入,影響營(yíng)養(yǎng)鹽動(dòng)態(tài)。

 

沉積物O?和H?S剖面(來自 圖3):

 

數(shù)據(jù):O?在表層1-3mm內(nèi)消耗殆盡;H?S濃度高(高達(dá)57.2 μM),尤其在溫暖月份。

 

研究意義:證實(shí)沉積物硫化且厭氧,直接支持DNRA優(yōu)勢(shì)假設(shè),因?yàn)镠?S抑制反硝化并可能作為DNRA的電子供體。

 

反硝化和DNRA速率(來自 圖4和 表1):

 

數(shù)據(jù):原位反硝化速率低(平均0.9 μmol N m?2 h?1);DNRA速率高(平均44.4 μmol N m?2 h?1);在過量NO?下,DNRA占硝酸鹽還原的66%(表1)。

 

研究意義:DNRA是主要硝酸鹽還原途徑,導(dǎo)致氮保留而非去除,加劇富營(yíng)養(yǎng)化。速率數(shù)據(jù)直接驗(yàn)證假設(shè),并顯示DNRA對(duì)氮預(yù)算的貢獻(xiàn)(相當(dāng)于15%保留氮輸入)。

 

PCA分析(來自 表2):

 

數(shù)據(jù):PC1與營(yíng)養(yǎng)鹽和鹽度相關(guān)(35%方差);PC2與溫度、H?S和DO相關(guān)(23%方差)。

 

研究意義:識(shí)別H?S和溫度作為關(guān)鍵驅(qū)動(dòng)因子,支持硫化條件促進(jìn)DNRA。反硝化容量與PC1負(fù)相關(guān),表明營(yíng)養(yǎng)鹽可用性影響反硝化但不足以克服硫化抑制。

 

5. 主要結(jié)論

論文得出以下核心結(jié)論:

 

DNRA主導(dǎo)硝酸鹽還原:在Weeks Bay的硫化沉積物中,DNRA速率顯著超過反硝化,即使在過量硝酸鹽下也占主導(dǎo)(66%貢獻(xiàn))。

氮保留加劇富營(yíng)養(yǎng)化:DNRA保留氮作為NH??,支持初級(jí)生產(chǎn)但導(dǎo)致缺氧、藻華和魚類死亡,阻礙生態(tài)系統(tǒng)恢復(fù)。

環(huán)境驅(qū)動(dòng)因子:硫化條件(H?S)和高沉積物C:N比(15:1)促進(jìn)DNRA,而反硝化受抑制。

 

管理啟示:必須減少流域營(yíng)養(yǎng)輸入(尤其是氮),以降低DNRA的氮保留效應(yīng),緩解富營(yíng)養(yǎng)化。

 

6. 詳細(xì)解讀:使用丹麥Unisense電極測(cè)量數(shù)據(jù)的研究意義

在本研究中,丹麥Unisense公司的微電極系統(tǒng)(Ox-500氧電極和H?S-50硫化氫電極)被用于關(guān)鍵的原位測(cè)量,這些數(shù)據(jù)在方法部分(2.4節(jié))描述并生成圖3的剖面。

測(cè)量數(shù)據(jù):Unisense微電極以高空間分辨率(1mm間隔)測(cè)量了沉積物-水界面附近的溶解氧(O?)和硫化氫(H?S)垂直濃度剖面,覆蓋表層1cm沉積物。數(shù)據(jù)顯示O?快速消耗(通常在1-3mm內(nèi)降至0),而H?S濃度高(峰值達(dá)57.2 μM),表明強(qiáng)還原條件。

詳細(xì)研究意義解讀:

 

直接證實(shí)硫化沉積物條件:Unisense電極提供的高分辨率H?S數(shù)據(jù)是支持研究假設(shè)的關(guān)鍵證據(jù)。H?S濃度高(圖3bottom panel)表明沉積物是硫化的,這已知會(huì)抑制反硝化(通過干擾酶活性或競(jìng)爭(zhēng)電子供體)并促進(jìn)DNRA(因?yàn)榱蚧锟勺鳛榛茏责B(yǎng)DNRA的電子供體)。這解釋了為什么DNRA速率遠(yuǎn)高于反硝化。

評(píng)估氧可用性和厭氧程度:O?剖面(圖3top panel)顯示表層快速缺氧,證實(shí)厭氧條件盛行,適合厭氧過程如DNRA和反硝化。但O?的快速消耗限制了硝化作用(硝酸鹽來源),進(jìn)一步抑制反硝化而有利于DNRA。

揭示季節(jié)動(dòng)態(tài):H?S濃度在溫暖月份更高,與溫度正相關(guān)(PCA的PC2),表明變暖增強(qiáng)硫化作用,從而強(qiáng)化DNRA優(yōu)勢(shì)。這提供了機(jī)制性見解:氣候變暖可能通過增強(qiáng)硫化來加劇氮保留。

支持過程速率解釋:微電極數(shù)據(jù)與反硝化/DNRA速率(圖4)結(jié)合,顯示H?S高的站點(diǎn)(如MidBay)DNRA速率更高,直接 linking 環(huán)境條件與生物地球化學(xué)響應(yīng)。沒有這些剖面,無法準(zhǔn)確解釋為什么反硝化低而DNRA高。

管理意義:持續(xù)硫化條件(由Unisense數(shù)據(jù)驗(yàn)證)表明,除非減少營(yíng)養(yǎng)輸入,否則DNRA驅(qū)動(dòng)的氮保留將持續(xù),阻礙河口恢復(fù)。這強(qiáng)調(diào)了監(jiān)測(cè)沉積物化學(xué)的必要性。

 

技術(shù)優(yōu)勢(shì):Unisense微電極的毫米級(jí)分辨率和實(shí)時(shí)測(cè)量能力提供了精確的化學(xué)梯度數(shù)據(jù),避免了傳統(tǒng)采樣擾動(dòng)。這種原位傳感是理解沉積物-水界面過程的黃金標(biāo)準(zhǔn),增強(qiáng)了研究的可靠性。

 

綜上所述,Unisense微電極在本研究中扮演了 “沉積物化學(xué)狀態(tài)偵察器”的角色。其提供的高分辨率O?和H?S剖面不僅是描述性參數(shù),更是驗(yàn)證假設(shè)、解釋過程機(jī)制和指導(dǎo)管理決策的核心證據(jù)。沒有這些數(shù)據(jù),研究無法建立硫化條件與DNRA優(yōu)勢(shì)之間的因果鏈,結(jié)論的深度和說服力將顯著降低。這項(xiàng)工作突出了原位傳感技術(shù)在富營(yíng)養(yǎng)化研究中的重要性,尤其對(duì)于揭示氮循環(huán)的調(diào)控因素。